
NASA

C',4
!

Z

Z

TECHNICAL NOTE

Jt

m. ,

A METHOD FOR ANALYZING NONLINEAR

CLOSED-LOOP CONTROL SYSTEMS
\

\WITH STATIONARY STOCHASTIC

by IVilfredJ. Minkus ('_{y(/--+<,'_,
t

' mes eseafc enter. < < "

Mooffett___ Field,_ Cali_ornia

and Stanford University

INPUTS

., , /. ' "--.

_./_ t

/ll /

NATIONALAERONAUTICSAND SPACEADMINISTRATION• WASHINGTON,D. C. • OCTOBER1963



CASEFILECOPY



TECHNICAL NOTE D-2061

A METHOD FOR ANALYZING NONLINEAR CLOSED-LOOP CONTROL

SYSTEMS WITH STATIONARY STOCHASTIC INPUTS

By Wilfred J. Minkus

Ames Research Center

Moffett Field, California

and

Stanford University

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION





NATIONAL AERONAUTICS A}YD SPACE ADMINISTRATION

TECHNICAL NOTE D-2061
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SYSTEMS WITH STATIONARY STOCHASTIC INPUTS*

By Wilfred J. Hinkus

SUMMARY

This study presents a method for investigating the response of a

closed-loop nonli_lear control system subject to a stationary stochastic

input with additive zero mean white Gaussian noise. An analytic tech-

nique for obtaining an approximate expression for the autocorrelation

functions at the input and output of the nonlinearity, as well as other

parts of the system's loop, is proposed. This analysis leads to an

expression for the root-mean-square error between the input and output

of the system. ___

*A thesis submitted in July 1963 to the Department of Electrical

Engineering and the Committee on the Graduate Division of Stanford

University in partial fulfillment of the requirements for the degree

of Engineer.



INTRODUCTION

At present, the principal methodused to analyze a closed-loop

nonlinear system subject to a stationary stochastic input is a statis-

tical linearization referred to as an equivalent gain technique. In

this method, the nonlinearity is replaced by an amplifier gain chosen

so as to minimize the mean-squareerror between this linear representa-

tion and the actual response of the component. Although this method is

easy to apply, it ignores the distortion that the nonlinearity produces

in the autocorrelation functions of the system.

It has been shownthat whena nonlinear device is subject to a

Gaussian distributed signal, its output autocorrelation function can be

expressed as a power series in terms of the input autocorrelation using

Mehler's expansion. I The first term of this series corresponds to a

linear gain and the others account for the distortion produced by the

device. By use of a rectangular-pulse approximation for the autoeorre-

lation functions of a closed-loop system, this paper showsthat the

Mehler expansion can be used to evaluate these functions and to obtain

an accurate estimate of the root-mean-square error between the system's

input and output. Matrix methods are used in this analysis. A digital

computer can be used for matrix inversion to obtain numerical and ana-

lytical results expediently.

The method is first applied to a system which is of particular

interest to the AmesResearch Center of the National Aeronautics and

Space Administration. The method is then extended to apply to the

analysis of a broad class of closed-loop nonlinear systems.
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STATEMENTOFINTERCEPTIONPROBL_

The particular system analyzed is an analog of what is co_only

referred to as an interception problem. The system's input is the

position of an airborne target contaminated by additive noise, and its

output is the position of the pursuing aircraft. The forward loop of

the system represents the dynamics of the pursuer, and includes an

element to simulate the physical limitations i_@osedon the thrust

capabilities of the plant. The remainder of this section will be devoted

to specifying this system and its inl_ts. The fact that a real physical

process is being represented will be implied in the definitions which

are made.

The acceleration of the target has two values ÷Ao and -Ao and

makes independent randomtransversals from one state to the other. The

probability that k transversals will occur in time T is given by a

Poisson distribution:

P(k;_) - (KT)k exp(-KT) (1)
k!

where K is the average number of transversals which occur per unit

time, and T _ O.

Let the acceleration of the target at time t be represented by

x(t). The ensemble average of x(t)x(t ÷ T) is the expected value

(x(t)x(t + T)>, and is referred to as the autocorrelation function of

x(t), Rx(T ). If ergodieity is assumed in this analysis, this average

is also the time average. From the statistics of x(t), and for T _ 0,
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= (Ao)(Ao) P(k;T)+ P(k;T)
k even k odd

= Ao 2 exp(-KT) _ (-KT)k = Ao 2 exp(-2KT)
. k!

k=o

For T < 0, the autocorrelation function is obtained from this expres-

sion by replacing T by -T. Hence, for all values of T,

RX(T ) = Ao 2 exp(-2K]Tl) (2)

As will be true for all autocorrelation functions,

Rx(T) = RX(-T) (3)

The noise is a Gaussian distributed random process with zero mean

and standard deviation of A I. It is referred to as being white, as its

frequency distribution is uniform over the infinite domain. Because of

its white characteristic, the noise amplitudes at two different instants

of time are uncorrelated and, since it has zero mean,

Rn(T ) : <n(t)n(t + T_ : A35(T) (_)

where 5(T) is the Kronecker delta.

Because the noise is white with zero mean, the cross-correlation

function between noise and acceleration input, Rnx(T) , vanishes; that is,

REX(T) = <n(t)x(t + Tp = <n(t)} <x(t + T)> = 0
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For real stationary processes _(t) and e(t) in general,

R_@(T) = <_(t)8(t + T_ = <8(t - T)_(t)> = RS_(-T)
(5)

The two-sided Laplace transform is used in the analysis that

follows. The transform of an autocorrelation function, Rx(T), is a

spectral density, Sx(S), and that of cross-correlation function,

Rnx(T), is cross-spectral density, Snx(S). The two-sided Laplace

transform pair that is used is defined by:

fY

s(_) = LR(_) = / R(_)ex_(-_)d_

' = -- S(s) exp(sm)ds
R(T) = I. i S(s) 2_j ....j_

where _ = j

(6)

(7)

By the use of e(_ations (2) and (6)

r,CO

_x(S ) = ,/ RX(T ) exp(-sT)dT
-00

= expE-(s + 2K)T]dT + exp[-(s
"0 _ -

+2/< -s+

[(_)2 _ s2]

Ol _

S=(s) = r(=)r(-s)
7(=)7(-s) 7(s)7(-s)

(8)
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where

and

r(s) = J(4K)  

7(s) = s +

O0

Sn(S) = ,_-'oo AImS(T) exp(-sT)d_- = AI 2 = KI , for all s

(9)

The symmetry relationships applicable to the spectral and cross-

spectral densities are analogous to those pertaining to their inverse

For real stationary processes _(t) and e(t),transformed quantities.

these relationships are:

8m(s) = Sm(-s) (lOa)

sme(s) = 8em(-s) (lOb)

The analog of the uncompensated plant dynamics is a static plant

gain_ Go, which is followed by a "hard limiter," which is followed by

a double integrator. These components are in the forward loop of the

system. The static response of the limiter is:

V o for u(t) _ Vo
y(t) : fIu(t)l : u(t) for lu(t) l < Vo (ii)

-Vo for u(t) _ -Vo

A Wiener filter, designed to minimize the mean-square error between

the system's input and output, precedes the uncompensated plant in the

forward loop. The equations from which this filter was calculated are

those of an equivalent linear system. They were obtained by replacing



the nonlinearity with an amplifier gain selected so as to minimize the

mean-square error between its response and that of the actual device.

The transfer function of the Wiener filter is:

H,(s)=

A unity feedback path is placed from the output of the system to

its input node, and the output is subtracted from the input to form the

error signal.

The features discussed are indicated in the block diagram of the

system. In this block diagram and in the presentation which follows,

small English letters indicate the analog signals. The same letter, but

with different ar_ment notation, indicates the signal in the time domain

and its Laplace transform. The system can be diagramed as follows:

n(s)-7

Figure i.- Block diagram of a system corresponding to an

interception problem.

The values of the parameters indicated above complete the statement

of the problem. They are :

Ao = 12.43 (13a)

2/< = 0.4311 (13b)

Ko = 4KAo 2 = 133.2 (13c)
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Kl = Al2 = 15.00

Go = 370.0

Vo = 92.34

7(s) = s + 2K = s + 0.4311

_(s) = 7.875×i0-2(s 2 + 1.136s + 0.4773)

v(s) = sa + 4.915s 2 + 12.01s + 4.448

(13d)

(13e)

(13f)

(13g)

(13_

(13i

ANALYSIS OF INTERCEPTION PROBL_I

If

q(_)= %n'(s) (l_a

H(s) = OoH'(s) (l_b)

and the block diagram of figure i is rearranged, the following equivalent

system representation is obtained:

n(s)--I

r(s) __ LIMITER _--

w(s)

Figure 2.- Block diagram of an equivalent system corresponding

to an interception problem.

The transforms of the analog signals of this system are related as

follows:

z(s)= r(s) y(s)
r(s)

v(s) = e(s) + n(s) : z(s____)+ n(s)
s_



Combining these equations, using

u(s) : _(s)v(s)

yields

V
_(s)L <_'s_'s" _(s =u(s) +--s_H(s)y(s) (15)

Since

is valid:

H(s)_(-s)[ l7(s)z(-_)s 4

x(t) and n(t) are uncorrelated, the following relationship

][.<r(t)r(t + T)> + ][.<n(t)n(t + T)>]

= L<u(t)u(t + T)> + H(s) H(-s)
sT L<u(t)y(t + T)> + se _<y(t)u(t + T)>

+ _(s)_(-_)
s4 L<y(t)y(t + T)>

The notation developed previously and equations (8) and (9) may be

used to write this relationship as:

_(s)_(-s) s_7(s)7(-s)
] H(s) H(-s)

+ _| = Su(S) + _y(s) +s--_ s_ S_(s)

+ H(s)_(-_)
s_ _(s) (16)

In the appendix it is shown that when the input to a nonlinear

device is Gaussian distributed, the autocorrelation function at the out-

put can be expressed as a power series in terms of the normalized input

autocorrelation function using Mehler's expansion. In the situation

being considered the nonlinearity is a limiter. This device truncates

the probability distribution at its input and presents the distorted



signal to the input node of the system by way of the feedback path. It

might seemthat, because of this distortion and the physically non-

Gaussian nature of the input x(t), the conditions under which the

Mehler expansion is valid are not satisfied here.

Under a hypothesis based on the Central Limit theorem, the proba-

bility distribution of the limiter's input can be regarded as being

quite close to Gaussian. This is due to the low pass characteristics

of the linear system consisting of the double integrator and Wiener

filter which precedes the limiter in the forward loop of the over-all

equivalent system. The referred to hypothesis states that: "The

asymptotic approach to normality of the output of a linear system whose

input is not normal is most pronounced if the system function has low

pass characteristics. ,2

If it is assumed,then, that the input to the limiter is Gaussian

and the results of equations (All) and (Al2) are used, the following

relationships are valid:

Ryu(T) = Ruy(T) = a_qu20u(T) = a_Ru(T) (17)

o0

Ry(T) = (_u2 _ an2oun(T ) (18)

n--o

where

Xn(_ ) =

oo

(19)

(-l) n

exp _-_ exp is a Hermite polynomial

(20)

t0



_u2 = R_(O) (21)

_u(_)

cu_

(22)

Substituting the result of equation (17) and

_(s) =
_(s)

obtained from equations (12), (14a), and (14b)., above, yields:

4(s)4(-s) I
_(s)_(-s) _7(s)7(-_) + x_ = Su(s) _l + 7 + _(-_)J

+ _(s)_(-s) _(s)

or

_(_)_(-s) [mo + K_7(_)7(-_)] = Su(S){S_(s)_(-s) + a_s2[_(_)_(-s)
_(s)7(-s)

+ _(-s)v(s)]_ + _(s)_(-s)l.Ry(T)

= Su(_)Is_(s)_(__) + s2_[_(s)_(_s)

+ _(-_)_(_)] + _3_(s)_(-_)_

+ Su(s)_s2(al - _1)[_(s)v(-s)

+ _(-s)_(s)] - _(s)_(-s)_

+ _(s)_(-s)l.Ry(T)

where _I is a constant which is chosen during the computation process.

ii



Defining

_(s) : s2v(s) + _z_(s) : s5 + 4.915s4 + 12.01ss

+(29.14_z + 4.448)s2 + 33.01_1s + 13.91_I (23)

_(s)= [n(s)v(-s)+ _(_s)v(s)]+ = 1_.84(s2+ 1.82Os+ o.7495)

where

_(sl_(-sl= In(s)_(-s)+ n(-s)_(sl}+ln(sl_(-s)+ n(-s)_(sI}-

= En(s)_(-s) + n(-_),_(s)]

yields

(24)

h(s)_(-s) [Ko+ K_s47(s)7(-s)]
_(s)_(-s)7(s)_(-s)

_. _(s)_(_s) _(s)_(_s)
(25)

It can be shown that h(s)/_(s) and _(s)/_(s) each have all their

poles and zeros in the right-half side of the s plane and are minimum

phase functions.

It would be desirable to obtain a closed-form expression for:

Ry(T) = qu 2 _, an2D n(T)

n=o

Integrating equation (19) by parts, using equations (ii) and (20),

yields
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an = (-i)n {f(m_u)
% 4-_(_:) dmn- z exp

(_ =-o0

_ [exp
- --oo _ de6n-I

-/Vo/% A [f(_%)]
d n-i exp d_ ,

n>l

Since

dc_

• " =-00 O_ =00

then

/ _2\-I o
an _ (-i) n+i Fd n-2 t___j _=c__/2_(n:)L_-'E:_ exp

C_ = -CL 0

where

Vo 92.34

% %

For n _ 2 an is evaluated as:

=0

n>2 (26)

(_)

oo

I La o = f(C_Cu)dm = 0 ,
%J-_ _

as f(_u) is an odd function (28)
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a I =

Vo Vo(_u@l

Jo
(29)

Let

_(_o) = (-l)n[2_(_:)]_j_[_-_ e_p =:_o
(30)

From equation (20)

= [2_n(n - i)] I/2 exp (-_a_ Xn_2(C_o)

Using equation (AT) (in the appendix), with _l = _e = So

OlD2 n=2

-_ dm pn
exp(-<Zoa) _(__e(c_o)

O0

exp(-ck)) I Xme(C_°)Pum
2x

m=o

e_ [._ :-_y ._ i

2_ jl - _u2

-C_o R ._

ex-p _ _ _j

(31)



In this expression and those that follow 0u(T) is written as Du.

Let

oo

A(Pu) = _ an2pun

11=2

(32)

From equatiolls (26) and (30) it is seen that

oo

f i o2[ <:)]A(Pu) = [2_(n')] \_---_f_-aexp
r].=.o C(,-=CgO

d_ndn-2-2[exp <_)]_= __o_}_n

oo

n=P-

Replacing s o by -so in equation (30) shows that

_n(-_o) : (-l)n_n(Go) n t 2

This permits A(pu) to be expressed as:

co

A(Pu) = [},,11(C_o) (-1)nAn(_o) ]Ou n

11:P_

co
-- ]

= L [(_)n (- -_) ]xn(_o)
n=2

so that, on using equation (31)

dO 2 2_ 4i 0u2 exp \_ + _7 - exp- ki - pu/J

15



from which:

2_]i - X2 k.l + h/ exp k,l - _/j

or :

A(_) = l n_ (PU - _) _--_--°2--_ exp d_ (33)

2-_ J l ]_2 exp k.l + >,/ -

This may be written as:

Jl _2 h i - ]_2 -exp I i - k _ I ) cl_

Jo _l x2
exp

kl - X2 / Lexp _i - X2/ - exp \i - X2/_ dX

or

(34)

Using equations (18), (28), (29), and (32) yields:

h
exp <i --Y2-7 sinh _i - _Ex] d}_

(3_)
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To solve equation (35) as it stands would require that pu(T) be

known beforehand. Although this is not the case, Qu(T) and Ry(_) are

implicitly related through the closed-loop-system equations. A tractable

expression for this interrelationship is obtained as follows:

Let the time history of the nonlinearity's input signal, u(t), be

approximated by a sequence of rectangular-shaped pulses each of width

To and height u(nTo), above or below the abscissa, equal to the value

of u(t) at the beginning of the nToth interval. Approximations of

this type have previously been used to analyze systems having no

feedback. 3

With this equivalence denoted by the symbol ~, the rectangular-

pulse approximation for u(t) can be ex]_ressed as:

where

oo

u(t) ~ _ u_ nTo - iTo_ P(t - nTo)

n= -_o

P(t) = {i,0,

for I tt < To/2

elsewhere

(36)

(37)

With ergodicity assumed, the rectangular pulse approximation of the

autocorrelation function pu(m) at T =ntT o is obtained as the following

time average:

OO

m= -oo

_ i
u_nTo _ To_ P(t - nTo)u_nTo + mTo

\
_ i To) P(t + T -mT o

2 /
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which may be written as :

co

_(T) - %-2
m = -oo

With mo

and with

chosen such that:

oo

m-- - O0

%(mo_ o) << i

%(_o) =

for convenience in the matrix methods that follow, one obtains:

m o

_(T) ~ _ UmP(T - _o)

m=-m o

The criterion for choosing To will be discussed later.

of equations (18) and (38); By(T) can be approximated as:

mo

Ry(T) ~ qU 2 _ _ ana(um)npniT- into)

n=o m=-_

pn(T - mTo) = P(T - mTo) , n a positive integer

Since

0u(mTo)P(T - mTo)

oo

Ym : qu-2RY (mTo) : _ ana(um)n

n:o

letting

(38)

(39)

By use

(4o)

(_i)

18



yields

m o

Ry(_-) _ _u_ _, ymP(_"- _o) (42)
m_ -]31o

A tractable expression for the inverse Laplace transform of

equation (25) is obtained in rectangular-pulse approximation form.

Letting . represent the convolation operation, m be a non-negative

integer, and considering the interval I(T mTo) l < To/2 , one obtains:

L -I [7 (s)7(-s) l._y(1-)]
L_(s)_(-s) IT' I

= L- l r_,l(S)Tli_S)] _(T) w___(_,)_-s)j _ I I

ypP (t - pT o ) I T' I

= " .... L_(_)_-_)]dt ypP(I - ,

To To
for T = T', m_ o - -- < IT' i <mT o + --

2 2
(43)

The domain of definition of equation (43) is expressed in terms of

I_'I, rather than T', because of the even symmetry of the inverse trans-

formed quantities; namely, that:

_y(-_,) = Ry(-T')

L_(s)_(-s) L_(s)_(-s) _

Extending the domain of definition of equation (43) to

I_I< [mo+ (1/2)]Toyields:
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n-_ _(s)u(-s) ]l
L_(s)_(-s) lmy(-,-) I'rl<(mo_)To

me mo (m_p+_)To L

(44)

The rectangular-pulse approximation for the inverse transform of

the other terms to the right of the equal sign in equation (23) can also

be expressed in this manner. This expression is:

]u-_ {lSu(S)Ii+ (_- _J_(s)_(-s)- _3_(s),l(-s)] }
_ _(s)_(-s) I .r I<(mo_)%

mo

m=o

m o

p--to-do<_-p-})To L _(_1_(-_) (45)

The inverse Laplace transform of the expression to the left of the

equal sign in equation (25) can be written as

Z(T) = [,-z{ [_(s)_(-sl] [Ko + Kls47(s)7(-s)]}* 5(t)(s)_(-s

The rectangular-pulse approximation for the dirac delta function,,

_(t), is

- :I-P(t) (46)
5 = To

When this expression is used and the indicated convolution is

performed, the rectangular-pulse approximation of Z(T) for

IT -mTol <1/2 is:

2O



f_ (m+_)T° ][-z [K o + Kzs47(s)y(-s)] dq'P(T - mTo)!Zm
To j(m_½)T ° <_(s)_(-s)

(47)

The quantity has the property that:

Zm = Z-m

Using this and the symmetry of the other quantities in equation (25).

letting:

_- F (m+_'T° ][,-i !_(s)_](-s))l(s)_(_s
_m '-" ---'Toj(m_) dm

f(m+_)To

5m = J__½)T °
r{(s){(-s) (49)

m o mo

ZmP('T' - re-'To): (_u2 _ <um

m=o m=o

and equating the rectangular-pulse approximations for inverse Laplace

transforms of the left- and right-hand sides of equation (25) yields:

mo

+ _ I (al c_l)U, p ,8, m_p,

p=m-mo

_ c_i2U, p,_,m_p, + y,p,_,m_p,] } P(,T' - mT o) (50)

The convolution integral was used to derive the expression for Zm.

This was done so that each Im would be an averaged type quantity com-

patible with those indicated in equations (48) and (49).

By its definition, it is required that 0n(0 ) = u o = i. Using

this. the symmetry property of the parameters, and equating coefficients

21



of P(ITI - mTo) at m = 0 in equation (50) yields:

Zo
-- = i + (aI
_u2 _i)_o + (Yo - _12)_o

mo

+ 2 [(a i - c_i)Up$ p + (yp - o_i2Up)_p]

p=l

(51)

Equation (50) can be written in a more convenient form for

computative purposes. Let

$1ml ' P = 0

Smp = SIm-pl + Blm+pl , i <_ Ipl <mo - m

_Im-pl , mo - m + i ! IPl <_mo

(52)

$1ml , P = 0

6rap = 51m-pl + _)Im+pl ' i <_ ]pl <_ mo - m

61m_pl , mo - m + 1 <_ Ipl <_ mo

Then equation (50) can be written

mo m o m o

/_ ZmP(l'rl- mTo)= C_u2 _ _ urn+ _ [(al- _i)6mpU p

m=o m=o p=o

(Yp - c_12up)_3mp]j_ P(IT I - _o)

(53)

(54)

The matrix notation can be used to relate the coefficients of

P(ITI - niTo) of this equation in a meaningful and concise manner.

L, U, and Y as (mo + i)×i column matrices whose elements in the

(m + l)th row are Zm, Um, and Ym, respectively; with B and A as

With

22



(mo + l)×(mo + i) square matrices, whose elements in the (m + l)th row

and (n + l)th column are _mnand 5mn_ respectively; and with I as

the (mo + l)×(mo + I) unit matrix, the follo_,_ing relationship follows

from equation (54) :

T : _u2[z + (a_ - _)_ - _2B]u + _u_Y (55)

Because of the symmetry of its autocorrelation functions, and the

equations defining the components of B and A, equation (55) can be con-

sidered to be applicable to either positive or negative values of

incremental time mT o .

The relationship between Ry(T) and Du(T ) is obtained from equa-

tion (35). It will be convenient to restate this relationship in terms

of um and Ym which have been defined since this equation was set down.

The restatement is:

yn = Un(az)2 + _ _aUn (Un- _)exp I.-V°_ ,] sinh I _Voe ] d_
_I Za L2du2( I _ Z2) L2Ou2( I _ h2)

where Vo = 92.34, and Inl g mo (56)

The computation process for finding U and, hence, the approximate

expression for 0u(T ) will be discussed below. It is an iterative pro-

cess in which successive values of U and the parameters from which it

is computed are found, and one which terminates when these values do not

change significantly. To index the values found during a particular

iteration, the ith iteration, a subscript (i) is added to the symbol

of the parameter being computed (e.g., _u(i) is the value of _u found

23



on the ith iteration). Except for finding the initial set of values

(i = 0), the same iteration process is used until the computed values

converge.

To initiate the computation process, the nonlinearity is replaced

by a linear gain al(o) such that Ry(o)(T ) = a_(o)Ru(o)(T ). With this

substitution, and with _i = al = al(o) and s = j_, equation (25) becomes

1.27a×i04(_ 4 + 33.59_ 2 + o.2278)(_ e + 0.1858_ 4 + 8.878)

( we[_ - 12"01_2 + 33'01ai(o)] e + 14.915 _4 [29.14ai(o) + 4.4_]w e + 13.91aI(o)_(_ 2 + 0.1858)

In this equation s has been set equal to j_.

this will enable the expression to be used in evaluating

as cu. From its definition, Cu is evaluated as:

Cu(o) = , 3u(o) (jw)d_

From equation (29):

,65"29/ u(o)az(o) = exp(- 2)dp

Values for _u(o) and at(o)

equations (58) a__d (59).

(57)

As will be seen,

To as well

are obtained by simultaneously solving

By the evaluation of equation (57) To is computed as a function

of _. Following a region of rapid change near the origin, Su(o)(j_ )

decreases monotonically with I_i in a well-behaved manner. After

a certain value of I_I, I_oi , the value of Su(o)(j_) can be

considered to be insignificant as compared with that at the begin-

ning of the well-behaved region. Since Su(o)(j_ ) = Su(o)(-j_),

24

(58)

(59)



this behavior need not be noted for both positive and negative values

of _. On the assumption that 8u(o)(j_) is bandlimited to +I_oI,

Nyquist's sampling theorem is used to compute To as:

1 (60)
To = 21 _o i

where _o is the frequency at which the value of Su(o)(j_ ) is con-

sidered to be insignificant.

Next, Ru(o)(T) is evaluated as a function of T. It will be found

that its value decreases monotonically with {T{ in a well-behaved

manner in a region away from the origin. At an integer_ mo_ the value

of Ru(o)(ImolTo) can be considered to be insignificant as compared to

its value at the beginning of the well-behaved region. Because

R_(o) (mTo) = _(o)(-mTo), this behavior need be noted for either posi-

tive or negative values of mT o but not for both. The mo found by

this process is the mo referred to above.

The values of To, too, and at(o) found above ere used to compute

a set of Zm from equation (54) for 0 <_ m <_ mo, forming the vector

[L]al(o ). Since

setting al = at(o) : _l

Ro) = a (o)U(o) (61)

in equation (55) yields

(6e)
U(o) = 2

%(0)

Before continuing the computation process, it is necessary to change

_i by a small anmunt from its value of at(o). If this were not done
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the effect of the nonlinearity would be approximated by only the linear

gain at(o). This can be seen from equation (54). The change in _i

will affect the waveshape of 8u(o)(j_ ) and its bandwidth value I_oI.

It should be limited to a value which does not significantly alter the

value of _o and_ hence, the values of To and mo found from it.

It may be assumed that if a change in _l is accompanied by a

relatively insignificant change in the dominant roots of the character-

istic equation, _o will change by a comparatively small amount. Since

the roots of the characteristic equation which change with _i are

those contributed by _(s), the effect that a change in _i has on _o

can be gaged qualitatively by plotting the roots of _(s) in the com-

plex s plane as a function of _i.

Equation (55), with equation (56) substituted into it, reveals that

_u is proportional to the difference between _i and a I. Equation (29),

on the other hand, shows that increases or decreases in a I are reflected

oppositely in changes of _u" This indicates that the value of _i now

selected may be chosen to produce a self-correcting type action between

the values of a I and qu found in the subsequent iterations; and,

furthermore, that its value may be chosen to speed up the convergence

of the iteration process. During the iteration, _i could be changed

continually; but since L, A, and B mnst be recomputed each time _l

is changed, this does not seem practical. Before _i is changed, the

need for the alteration should be carefully ascertained.

As an example of the use of the technique for determining _i, the

situation pertinent to the particular problem being studied will be
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described. For _i = ai(o ) the real part of the dominant root of _(s),

in equation (23), is equal to 0.6927. Decreasing _l causes its value

to drop quite rapidly; whereas, increasing _i by 1.0 percent causes it

to increase by about 0.64 percent to its maximm value. A further

increase of 6.5 percent in _i causes the real part of dominant root

to decrease by about the same percentage. Thus, the real part of domi-

nant root increases slightly and then gradually decreases as _i is

increased from its value of al(o). This behavior suggests that the

self-correcting type action described above would be more likely to occur

if _i were chosen so that the real part of the dominant root were to

lie on the locus which is on the other side of the maximum to that corre-

sponding to _i = ai(o). The new value of _i is, therefore, taken to

be 0.4700, an increase of 1.0 percent + 6.5 percent from al(o) = O.L400.

This value of _i is used to evaluate L, B, and A. Unless a

change in its w_lue is required for aiding the convergence of the com-

putation process, the value of _i and those of L, B, and _ will not

be altered for the remainder of the process; consequently, no (i) sub-

scripts are added to the notation of these parameters.

The general iteration process will now be described. Under the

assumption that ai(i), qu(i), U(i), and Y(i) are known for i _ O,

the (i + l)th set of values is computed as follows:

(i) au(i+i) is computed from either equation (51) or the first row

of equation (55) with al = al(i), U = U(i), and Y = Y(i)'

(2) at(i) is computed from equation (29) with qu = gu(i+l)"

(3) U(i+1 ) is computed from equation (55) with _u = _u(i+l),

a_ = ai(i+i] , and Y = Y(i), as follo_s:
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E IE 1-IL BY(i ) I _l]Au(i+_)= _- +[_(i+_) - - a_(i+_)B
_u(i+_) (63)

(4) Y(i+z) is computed from equation (56) with ou = _u(i+1)'

a i = ai(i+l) , and U = U(i+l ).

Due to the size of the matrix, a digital computer should be used

to perform the matrix inversion required in step (3) of the iteration

process. With _i constant, the program required to recalculate the

inverse matrix between iterations should be relatively simple, since

the only change in the matrix is t_at due to al, which enters as a

linear coefficient of _.

The order of computation has been chosen to insure that U will

be computed from the most recently computed values of Ou and a i. The

process also insures that Uo(i) = 1 for all values of i. This is

necessary since U represents a normalized autocorrelation function.

Now that the rectangular-pulse approximation for Ou(_) has been

obtained, the next step is to find a similar expression for Rv(T ). Let

the rectangular-pulse approximation for Rv(_) be given by:

mo

Rv(T) = au2 _i VmP(T m_°) (64)

m= -mo

Sin_e :

_u2Du(T) = [][-iH(s)H(_s)]* Rv(T)= [][-i B(s)_(-sl] *Rv(1")v(s)v(-s
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Using equations (39) and (64) yields:

mo

%2 _ um:P(I-r I _ n_o)

m=o

mo mo

m=o p=m-m o

F (m-P+_)To_](s)_](-s)
vp U(m-p-_)To_(s)_(-s)

dtP(ITl - n_ o)

(6})

If _(s) is replaced by v(s) and _(-s) by v(-s), @mp is defined

_mp" With this notation, equation (65) becomesanalogously to

m o me mo

UmP(]T[-inTo) = _ _ _JmpVpP([T]

m=o m=o p=o

- m_To) (66)

With u and V as (mo + i)×i column matrices whose (m + l)th row

elements are um and Vm, respectively, and with Y as a (mo X l)x(m o X i)

square matrix whose element in the (m + l)th row and (n + 1)th column

is _mn, equation (66) can be written as:

U = YV (67)

or, with the usual notation for the inverse of a matrix, as:

v : _-iu (68)

The external input to the node preceding H(s), n(t), represents

zero mean white Gaussian noise and, because of this, is uncorrelated

with e(t), the other input at this node. This means that the expected

value
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<e(t)n(t_ = <e(t)> <n(t)> = 0 (69)

so that

Rv(T) = Rm(T) + Re(T) (70)

Using equations (4), (13d), and (46) the rectangular-pulse approxi-

mation for Rn(T ) is obtained from:

Rn( )= A 28(T)=

as

Rn(T) ~ K-_IP(T) (71)
To

and the rectangular-pulse approximation of the root-mean-square error

signal, Re(0), is obtained from:

Re(O) : Rv(O) - Rn(O)

as

Re(O) ~ _u2v° - T_ (72)

This is the end result sought in the study. It will be noted that

only the first row element of V, Vo, was required to obtain it.

Because of the low-pass characteristics of the filter, H(s), the

significant bandwidth of 8u(j_ ) will be less than that of 3v(j_ ).

This effect is reflected oppositely in the significant domains of defini-

tion of the autocorrelation functions Ru(T) and Rv(T ). As compared with

that of Ru(T) , the significant domain of definition of Rv(T ) will be

decreased. This means that the value of moT o determined for Bu(T ) may

be applied to Rv(T) without deteriorating the accuracy of the results.
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ANALYSISOFA MOREGH_ERALCLASSOFNONLINEARSYSTEMS

In the interception problem the relationship between the input and

output autocorrelation functions could be expressed in closed form. In

the general situation, where this need not be the case, a slight change

in the procedure may be required. The analysis need not be restricted

to systems whose block diagrams can be reduced to that indicated in fig-

ure 2. By simply redefining the quantities it can be extended to a

much broader class.

The purpose of this section will be to extend the analysis to more

general classes of nonlinearities and systems. When a symbol here has

the same meaning as that used in the previous analysis, the defining

equation above will be referred to. It will consider systems whose

input is a stationary real random process subject to additive zero mean

white Gaussian noise. The system configuration should be physically

realizable, can be reduced to the block diagram of figure 3, and meets

a minimum phase condition which is indicated below.

The block diagram of the general type system is indicated in

figure 3. The quantities which indicate the transforms of the analog

signals are equivalent to those of figure 2.

r (s)

n(s)---]

NONLINEAR

DEVICE

Figure 3.- Block diagram of a general class of systems.
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The following relationships exist amongthe quantities indicated

in figure 3.

Gs(s)[G1(s)G2(s)r(s) + n(s)] = u(s) + Ge(s)Gs(s)G4(s)y(s) (73)

The relationship between the quantities at input and output of the

nonlinearity, f(u), are indicated in equations (17) through (22),

inclusive. Using these relationships, and the fact that e(t) and n(t)

are uncorrelated yields:

G3(s)G3(-s)[Gl(s)G1(-s)G2(s)G2(-S)Sr(S) + Sn(S)]

= 8u(S) + a1[a2(s)a3(s)a4(s)+ a2(-s)G3(-s)a4(-s)]Su(S)

+ Ge(s)G2(-s)Gs(s)Gs(-s)G4(s)G4(-S)Sy(S) (74)

Defining

Pn(S)
Gn(s)= (75)

%(s)

_(s) = p_(s)p_(s)p_(s) (76)

v(s) = %(s)c_(s)q4(s ) (77)

_(s)= v(s)+ a_(s) (78)

-m I -i
_(s) : s n (s2 + di2) (s)v(-s)+ _(-s)_(s) (79)

i=l

m I and m_ are integers, di are real constants, and the meaningwhere

of the symbol I _+ is indicated below equation (24).

[p_(s)p_(-s)]SKo(S):L ' (8o)
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(81)

Analogous to equation (25), equation (74) can be written as:

SKo(S)+ SKI(S)

m2

Ii (al- c_l)s2ml H (s2
= + I=i

d 2-2 1

+
Sy(S) (82)

The zeros of N(s) and v(s) which occur on the imaginary axis in

the complex s plane were eliminated from the definition of _(s) in

equation (79). Those _¢hich occur at origin were eliminated by the

s-ml factor, and those occurring in conjugate pairs were eliminated by

m2

the E (s2 + di2) -I factor. The method of this analysis is restricted
i=l

to systems for which the resulting _(s) can be formed so as to have all

its zeros in the left-half side of the complex s plane. It is also

restricted to stable systems and is, hence, restricted to systems where

_(s) also has this property. The restriction amounts to requiring that

_(s)/_(s) be a minimum phase function, one having all its poles and zeros

in the left-hand side of the complex s plane.

Except for equations (45), (47), (49), (56), (57), and (59), equa-

tions (36) through (63), inclusive, are applicable to the present

analysis.

Equation (59) is replaced by equation (19) with n = i(0) and

Ou = ou(O) • Equations (47), (49), and (57) are replaced by

equations (83), (_4), and (85), respectively, where:
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i _(m+_)T°L-l[SKo(S ) + SKl(S)]dTp(T _ mTo)

:To  (m- ITo

s2ml II (s2 + di)2_(s)z(-s

5m J(m__)T o _(s)_(-s)

_u(o)(J _) = [SKo(S) + SKz(S)] s=jco

(83)

d-r (84)

(85)

Equation (45) mnst be modified. The quotient within the brackets

on both sides of this equation must be replaced by the quotient within

the bracket of equation (82).

When it is possible to obtain a closed-form relationship _etween

the input and output autoco_relation functions of the nonlinear device

of the system, this relationship, expressed in rectangular-pulse approxi-

mation form, is substituted for equation (56) of the computational pro-

cess. When it is not possible to find such a relationship, the power

series relationship indicated by equation (41) is used instead.

If the indicated substitutions are used, the rectangular-pulse

approximation expression for P_(T) is found by the same iterative

numerical method discussed relative to the interception problem. The

possible necessity of relating Ru(T ) and Ry(T) by the power series

expression of equation (41) presents no difficulty in this method. The

expression for Ry(T) in a given interval of time, mTo, is related to

that of Ru(T ) in the same interval of time by this equation. Because

of the properties of the pulse-approximation method, the value of

Ru(T ) in other intervals of time do not enter into this computation,
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thus permitting Ry(_) to be calculated as a set of scalar equations.

Ru(T ) is found from equation (55) rather than from the inverted relation-

ship indicated by this set of equations.

The method for finding the rectangular-pulse approximation for

Rv(T ) here is essentially the same as that indicated previously. Equa-

tion (64) is directly applicable, and the method proceeds as follows:

Let

dm = J(m-_ )To L-1[G3(s)G3(-s)]dt (86)

dlm I , p = 0
i

amp = Idlm-pi + _Im+pl , l< IPl _mo - m (87)

[alto_p}, mo - m + l! IPJ _mo

With D as a (mo + l)×(m o + i) square matrix, whose element in the

(m + l)th row and (n + l)th column is dmn , and V as a (mo + i)×i

column matrix, _lose element in the (m + l)th row is Vm, the relation-

ship between the rectangular-pulse approximations of the autocorrelation

functions at the output and input of the system component designated as

G3(s) is, in matrix notation:

U = DV

from which, using the usual notation for the inverse of a matrix, one

obtains:

v = D-:U (88)

The method for finding the root-mean-square value of the error,

e(t), from vo is the same as that indicated for the interception
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problem.

of its inverse Laplace transform is a constant, (_n)2/To .

as follows:

Since the noise is white, the rectangular-pulse approximation

It is obtained

L-Z_n(S) (_n)2$(T) (_n)2= (89)
To

If the noise is uncorrelated with the error signal and has zero

mean, the rectangular-pulse approximation for error is:

(_n) e
Re(O) : _ueVo (90)

To

A particular example of extending the method of analysis to a more

general type situation will be indicated before concluding this section

of the study. This example is that of a system having the same configura-

tion as the interception problem but with the limiter replaced by a non-

linearity whose static response is monotonically increasing, has odd

symmetry, and can be represented by a number of straight-line segments.

With (U)m denoting the ordinate at which its slope changes, the static

response of the nonlinearity can be represented as:

N

flu(t)] = _ k_u(t)[Qn(u ) _ Qn_1(u)] = _ (k_ k_+l)u(t)Qn(u )

n=l n=l

N

f[u(t)] = _ kmu(t)Qn(u )

n--1

(91)

or
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where

f[u(t)] = -f[-u(t)]

f(O) = (_)o = 0

]f[u(t)][ = f[(u) N] , for lu(t)1>_(u)N

and with

for lu(t) l < (U)n

for ]u(t)[ _ (u) n

(92)

f[(U)n] - f[(U)n_ _]

(_)_ (_)___

(93)

_n = _ - kA+_ (94)

By use of equation (91) the an of equation (18) can be found like

those of equations (26), (28), and (29) as follows:

a n =

N

(-1)n+_
J2_(n! ) m=i

L_ 2 exp _--TJ_=-(u)_du '

n > 2 (95)

oo

i /_ f(a_u)d_ = 0 ,a 0 -

% d-5-g -
as f(u) is an odd f_nction (96)

N (U)m(_uq_) -1

al = --_ k,m.; °
m= 1

exp(__2)d_ (97)
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Using these equations, one obtains instead of equation (56) the

following:

Yn = ttn(al) 2

i P un (Un - h)
÷ --

_o jl x2

N

-E(Ulm \
_ k m exp _qu2(1 _ X2)J Lpau2( 1 _ Xa)j dX

m= 1

(981

Upon substitution of these expressions, the analysis proceeds as

in the interception problem.

CONCLUDING I_S

The restrictions imposed on the input statistics and system con-

figuration are sufficiently broad so that the method can be applied to

a wide class of problems. The method does not require that a filter

designed to minimize the root-mean-square value of the signal at the

error node be present or that this error signal be a measure of the

difference between the input and output of the system; but the results

are most meaningful under these conditions.

The rectangular-pulse approximation which is used permits the

antocorrelation response at the input of the nonlinear device to be

n_itiplied by itself any number of times. The quantity obtained main-

tains the characteristic that its value at any interval of time depends

only on the value of the input autocorrelation function in that interval

of time, and not on any other interval of time. This, together with

Mehler's expansion, provides a tractable method for finding the output
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autocorrelation function of the nonlinear device as a power series in

terms of its normalized input autocorrelation function. The flexibility

of the technique is enhanced by the methodology of the iterative process,

which permits the input autocorrelation function to be derived from a

relatively simple matrix expression, rather than from the inverted power

series obtained from the Mehler expansion. This process is mechanized

for a digital computer so that answers may be obtained quickly.

The method provides a tool for obtaining numerical and analytic

expressions for the autocorrelation functions at various points in the

system, as well as the root-mean-square value of the signal at the error

node. As such, it provides an instrument for viewing what effect

changes in the configuration of the component, referred to as Wiener

filter, have on these quantities. Since the interrelationships between

the parameter of the filter and these quantities are implicit in this

method, the modus operandi of the investigation would be experimental.

Computer techniques would enable the filter parameters to be varied; the

changes in the error and the waveshapes of the autocorrelation functions

would then be noted. A mathematical model fer the process would at

first be obtained by means of perturbation techniques. The changes in

the filter parameters would be small and the interrelationships would

be derived from a quasi-linear type analysis.

Ames Research Center

National Aeronautics and Space Administration

Moffett Field, Calif., June 6, 1963
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APPENDIX

The autocorrelation function, Ry(tz,t2) , at the output of a

nonlinear device can be expressed as a function of its static response,

f(u), and the joint probability density, P(Uz,U2), of its input as

follows:

where

CO CO

Ry(tl,t2) = __ f__ f(ul)f(u2)P(Ul,U2)dul dua

ul = u(tl) and u2 = u(t2)

When the input statistics are Gaussian with standard deviation

and normalized autocorrelation function

as"

Ry(tz,t2)

2_u2 _i pu2 -_ -

(Ai)

%

Pu' equation (i) may be written

I-(uz2+u2 a - 2puuzu2)] dul duaf(u_)f(u2)expL _Tf : _2)
(A2)

Mehler's expansion of the exponential in this equation may be used

to express Ry(tz,t2) in terms of a power series of the normalized input

autocorrelation function, Pu" The expression for this expansion will

(A3)

now be derived•

The nth Hermite polynomial is defined as:

d n

Hn(_) = (_i) n exp(_ a) _ exp(-qOa)
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Since

where

exp(-_2)

co

:-_i '--oo_exp( -_'° + 2Ja40)d_

j=J 

(A4)

equation (A3) becomes :

Hn(q)) = (=]_)n(_)-z/2

co

.n
t -

(A5)

as

n=o

equation (A5) yields:

co

_C _n(_)_(_)0_ n
/

...._ 2nnl
n=o

co

\ (2j )2n_un(_ )n2-n exp( __2
/ _n' _ ,

n=o

+ 2jc_ z _ _2 + 2j_2)dm ' d_

co

: _ (_n:)
11=0

co co

-i exp(Ml2 + M22)__ fco(_2Pua_)n_ exp( _a2

_ _2 + 2j_z + 2j_2)d_ d_

co co

= _-i exp(_DI2 + qD22)f'co/_co_,_ exp(-cg2 - _2 + 2Jc_<Ol

+ ej_ 2 - 2pu_)a_ a_
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Using equation (A4):

O0

iL exp(-_2 + 2j_ 2

O0

l 7 ex_(-_2+ 2J_(m2 + J_)_

= e_[-(m2 + Jc_%)2]

Substituting this above and then using equation (A4) again yields:

L Hn(q)l)Hn(CP2) _un2nn,

from which is obtained:

O0

= _-1/2 ex#(_z2 + m22) 7=_ ex#[-(m2 + J_Ou)2 - ¢2

+ 2ja_o 1 ] dc_

n=o

O0

= _-1/2 exp(%.2) Z exp[ _2(m - _2)
-00

+ 2j_(_ z - imu_2)]clm

= [_t(l - gS,t2)] -:L/2 exI)(q°l 2) 7__ exp[-°_2

-1/2]d u+ 2j_(_ - %_2)(1 - Pu2)

= (1 - Ou2) -z/2 exp(_z 2) exp[-(_z - Pu_P2)2(1 - Ou2)-l]

= (1 - Du2) -1/2 exp(ml 2 + _2 2) exp[-(£012 + _2 2

- 2_umlm2)(l - &2) -_-]

(1 - %2) -z/2 e_q_[-(mza + ma2 - 2_mJ-m2)(l - _ 2)-z]

= exp(-qom 2 - q_22) 2nn:

n:o

(A6)
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Letting

_i = 2-i/2_I

and

_2 = 2-i/2{2

and introducing the Hermite polynomials based on

by

exp(-_2/2) and defined

(_)_n_<n(_) = (-l)n( n')-I/2 exp d-_ exp

= (n, 2n) -1/2Hn(2-1/2_)

into equation (A6) yields

(i 0u2)-i/e [-_12 - _22 + 2Du_i_2]
- exp 2ii - _2_

oo

=expl
n=o

(AT)

Letting

and

in equation (A2) and substituting equation (A7) into the resulting

expression yields
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[i f(_u_llf(Gu_2)exp
Ry(tl,te) = _ __ 2

n=o

= _i Du n ,, f(o'u_ 1) Xn(_l) exp d_ z _m f(cru_ 2) Xn(_2) exp d_2

lq=O

(As)

or

where

O0

Ry(tl't2) = (_u2 I an2oun

n=o

(A9)

an -

when the input statistics are stationary, equation (A9) may be written

as :

CO

Ry(T) = _u 2 I an2oun

n=o

where

(All)

T = t I - t 2

Replacing f(ul) by ul in equation (A2) and then substituting

equation (A7), ul/_u = _i' and u2/_u = _2 into the resulting expression

yields

_U OUn d_l, f(Gu_ 2) Xn(_2) expEuy(tl,t2) = Ryu(tl,t2) = _ _1%m(_i) exp d_2

n=o
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Because of the orthonormal property of Xn(_):

i ?-- _Xn(_) exp d_ :
!

! , for n = i

0 , for n / i

(AI3)

and with the use of this and equation (AIO), equation (AI2) yields:

Ruy(tl,te) = Ryu(tl,te) : _uealou (A_k)

When the input statistics are stationary this may be written as:

Ruy(T) = Ryu(m) = _uealDu (A_5)

where

T = t I - te
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